更新時間:2020-02-20
液壓係統電磁閥4WE6U62/EG220N9K4/V,力士樂(le) REXROTH電磁閥;二位四通電磁換向閥工業(ye) 元件圖片(堵住其中二口B和T口,即為(wei) 二位二通閥)。二位二通電磁換向閥在液壓係統中的典型應用是與(yu) 溢流閥並聯組成卸荷回路。是利用二位二通電磁換向閥的卸荷回路。
液壓係統電磁閥4WE6U62/EG220N9K4/V,力士樂(le) REXROTH原裝電磁閥,*,betway必威西汉現貨供應;
二位四通電磁換向閥工業(ye) 元件圖片(堵住其中二口B和T口,即為(wei) 二位二通閥)。二位二通電磁換向閥在液壓係統中的典型應用是與(yu) 溢流閥並聯組成卸荷回路。是利用二位二通電磁換向閥的卸荷回路。1為(wei) 液壓泵,2為(wei) 溢流閥,3為(wei) 二位二通電磁換向閥,4三位四通雙電控“O”型中位電磁換向閥,5為(wei) 液壓缸。當二位二通電磁換向閥3通電時,泵排出的液壓油以接近零壓狀態流回油箱以節省動力並避免油溫上升。注意該回路不適宜大流量的液壓係統。
WEH型換向閥
WEH型換向閥是由電磁閥作為(wei) 先導控製的滑閥工換向閥。用於(yu) 控製液流的通斷和流動方向。
換向閥是由主閥體(ti) 、主閥芯、-個(ge) 或二個(ge) 複位彈簧和帶一個(ge) 或二個(ge) 電磁鐵的先導閥組成。主閥芯借助於(yu) 彈簧力或液壓力保持中間位置。先導閥可選擇濕式直流(或交流)電磁鐵,用先導閥的控製油使主閥芯換向(移位)。
當電磁鐵不通電時,推動故障檢查按鈕可導閥芯移動。控製油的輸入與(yu) 輸出可選用內(nei) 控或外控。
彈簧對中的三位四通換向閥( 4WEH25,, 60/,型)
主閥芯是靠兩(liang) 個(ge) 彈簧保持在中間位置,兩(liang) 彈簧腔與(yu) 導閥T腔相通(無背壓)。控製油從(cong) 通道引入供給先導閥,當先導閥換向後控製油作用在主閥芯兩(liang) 端中的一端上,推動主閥芯換向,從(cong) 而使各油口按滑閥機能接通。當電磁鐵斷電時,導閥芯回到初始位置(脈衝(chong) 閥除外),控製油腔
通過導閥T腔與(yu) 油箱接通,在彈簧力的作用下,主閥芯回到中間位置。彈簧內(nei) 的控製油經先導閥T腔或外排口Y排出。
壓力對中的三位四通換向閥(4WEH25H,,60/,型)
在這種結構中是通過壓力油作用在主閥芯的兩(liang) 端麵上,由閥體(ti) 內(nei) 的定位套使主閥芯保持在中間位置上。
如果主閥芯一端卸荷,則主閥換向,使相應的油口接通;此卸荷端的控製油通過先導閥通過通道Y排出。
組合機床動力滑台液壓係統
動力滑台是組合機床的一種通用部件,在滑台上可以配置各種工藝用途的切削頭。機床液壓動力滑台可以實現多種不同的工作循環,其中一種比較典型的工作循環是:快進→ 一工進→二工進→死擋鐵停留→快退→停止。 使液壓缸差動聯接以實現快速運動; 係統中采用限壓式變量葉片泵供油; 用行程閥、液控順序閥實現快進與(yu) 工進的轉換; 電液換向閥 使液壓缸差動聯接和變量泵以實現快速運動;
(1)快進 按下啟動按鈕,三位五通電液動換向閥5的先導電磁換向閥1YA得電,使之閥芯右移,左位進入工作狀態。 用二位二通電磁換向閥實現一工進和二工進之間的速度換接。
(2)一次工作在快進行程結束,滑台上的擋鐵壓下行程閥。 用行程閥、液控順序閥實現快進與(yu) 工進的轉換; 用二位二通電磁換向閥實現一工進和二工進之間的速度換接。
(3)第二次工作進給 為(wei) 保證進給的尺寸精度,采用了死擋鐵停留來限位。
(4)死擋鐵停留 當動力滑台第二次工作進給終了碰上死擋鐵後,液壓缸停止不動,係統的壓力進一步升高,達到壓力繼電器15的調定值時,經過時間繼電器的延時,再發出電信號,使滑台退回。在時間繼電器延時動作前,滑台停留在死擋塊限定的位置上。
(5)快退 時間繼電器發出電信號後,電液換向閥右位工作。 這時係統的壓力較低,變量泵2輸出流量大,動力滑台快速退回。由於(yu) 活塞杆的麵積大約為(wei) 活塞的一半,所以動力滑台快進、快退的速度大致相等。
(6)原位停止 當動力滑台退回到原始位置時,擋塊壓下行程開關(guan) ,電液換向閥處於(yu) 中位,動力滑台停止運動,變量泵卸荷。
液壓係統及液壓元件介紹
一、液壓係統的組成:動力部分、控製部分、執行部分、輔助裝置 液壓泵;用以將機械能轉化為(wei) 液體(ti) 的壓力能,有時也將蓄能器作為(wei) 緊急或輔助動力源
各類壓力、流量、方向等控製閥;用以實現對執行元件的運動速度、方向、作用力等的控製、也用於(yu) 實現過載保護、程序控製等
液壓缸、液壓馬達等;用以將液體(ti) 壓力轉化為(wei) 機械能
管路、蓄能器、過濾器、油箱、冷卻器、加熱器、壓力表、流量計等
二、液壓傳(chuan) 動的優(you) 點 質量輕體(ti) 積小 容易實現無級調速 易於(yu) 實現過載保護 液壓元件能夠自動潤滑 簡化機構 便於(yu) 實現自動化
三、液壓傳(chuan) 動的缺點 液壓元件製造精度要求高 實現定比傳(chuan) 動困難 油液受溫度的影響 不適宜遠距離輸送動力 油液中混入空氣易影響工作性能 油液容易汙染 發生故障不易檢查和排除。 四、液壓部件及圖形符號
液壓係統電磁閥4WE6U62/EG220N9K4/V
R900972011 4WE6U6X/EG12N9K4
R901169786 4WE6U6X/EG12N9K4/B10V
R901202327 4WE6U6X/EG12N9K4/ZV
R900915386 4WE6U6X/EG12N9Z4
R900971816 4WE6U6X/EG205N9K4
R901079100 4WE6U6X/EG205N9K4/T06
R901097055 4WE6U6X/EG205N9K4/ZV
R901396248 4WE6U6X/EG220N9K4/V
R901396248 4WE6U62/EG220N9K4/V
R901426636 4WE6U6X/EG24DK25L/62
R900923280 4WE6U6X/EG24K4
R900707701 4WE6U6X/EG24K4QR0G24S
R900738730 4WE6U6X/EG24N9C101D
R901186645 4WE6U6X/EG24N9C103D
R901112945 4WE6U6X/EG24N9C117D
R901123642 4WE6U6X/EG24N9C4/V
R978895111 4WE6U6X/EG24N9DA/62
R978900016 4WE6U6X/EG24N9DAL/62
R900734587 4WE6U6X/EG24N9DJL
R900763374 4WE6U6X/EG24N9DJL/B18
R900734589 4WE6U6X/EG24N9DJL1
R978029859 4WE6U6X/EG24N9DK25L/62
R978011066 4WE6U6X/EG24N9DK25L/62=CSA
R901029591 4WE6U6X/EG24N9K33L
R900701227 4WE6U6X/EG24N9K33L=AN
R900572785 4WE6U6X/EG24N9K4
柱塞泵
所述單柱塞泵中,凸輪使泵在半周內(nei) 吸油,半周內(nei) 排油。因此泵排出的流量:是脈動的,它所驅動的液壓缸或液壓馬達的運動速度是不均勻的。所以無論是泵或馬達總是做成多柱塞的。常用的多柱塞泵有徑向式和軸向式兩(liang) 大類。
一、徑向柱塞泵
1.徑向柱塞泵的工作原理
圖為(wei) 徑向柱塞泵的工作原理。之所以稱為(wei) 徑向柱塞泵是因為(wei) 有多個(ge) 柱塞徑向地配置在一個(ge) 共同的缸體(ti) 內(nei) 。缸體(ti) 由電動機帶動旋轉,柱塞要靠離心力耍出,但其頂部被定子的內(nei) 壁所限製。定子是一個(ge) 與(yu) 缸體(ti) 偏心放置的圓環。因此,當缸體(ti) 旋轉時柱塞就做往複運動。這裏采用配流軸配油,又稱徑向配流。徑向柱塞泵外形尺寸較大,目前生產(chan) 中應用不廣。
二、軸向柱塞泵
1、直軸式軸向柱塞泵原理
泵的工作原理。斜盤和配流盤固定不轉,電機帶動軸、缸體(ti) 以及缸體(ti) 內(nei) 柱塞-起旋轉。柱塞尾有彈簀,使其球頭與(yu) 斜盤保持接觸。
配流盤
由於(yu) 存在困油問題,為(wei) 減少困油,因此在配油盤的槽I、II的起始點開. 上條小三角槽,且在二配流槽的兩(liang) 端都開有小三角槽。
2、流量
軸向柱塞泵的幾何排量
q=(πd2/4) DZtg γ
平均理論流量為(wei)
Qn=(πd2/4) DZntg γ
式中d-柱塞直徑; D~ -柱塞在缸體(ti) .上的分布直徑; Z- -柱塞數; n-軸的轉速;γ-斜盤傾(qing) 斜角度。
從(cong) 上式看出:泵的流量及每轉排量可通過改變斜盤傾(qing) 角γ而改變,所以軸向柱塞泵可很方便地做成變量泵。
葉片泵和葉片式馬達
葉片泵具有結構緊湊、流量均勻、噪聲小、運轉平穩等優(you) 點,因而被廣 泛用於(yu) 中、低壓液壓係統中。但它也存在著結構複雜,吸油能力差,對油液汙染比較敏感等缺點。
葉片泵有兩(liang) 類:雙作用和單作用葉片泵,雙作用葉片泵是定量泵,單作用泵往往做成變量泵。
一、
雙作用葉片泵
1、結構和工作原理
雙作用葉片泵結構。它主要由殼體(ti) 、轉子、定子、葉片、配流盤和主軸等組成。
雙作用葉片泵工作原理可由下圖說明。當轉子和葉片一起按圖示方向旋轉時,由於(yu) 離心力的作用,葉片緊貼在定子4的內(nei) 表麵,把定子內(nei) 表麵、轉子外表麵和兩(liang) 個(ge) 配流盤形成的空間分割成八塊密封容積。隨著轉子的旋轉,每一塊密封容積會(hui) 周期性地變大和縮小。一轉內(nei) 密封容積變化兩(liang) 個(ge) 循環。所以密封容積每轉內(nei) 吸油、壓油兩(liang) 次,稱為(wei) 雙作用泵。雙作用使流量增加一倍,流量也相應增加。
2、排量和流量
如圖所示,當不考慮葉片厚度時,雙作用葉片泵的排量為(wei) Vo=2 (V;-V,)Z
Z為(wei) 密封容腔的個(ge) 數,V,和V,分別是完成吸油和壓油後封油區內(nei) 油液的體(ti) 積。顯然考慮到=2n/Z,所以V。= 2nB(R2 -r2)
式中,B一葉片的寬度, R、r一定子的長半徑和短半徑。
實際上葉片有一一定厚度,葉片所占的空間減小了密封工作容腔的容積。因此轉子每轉因葉片所占體(ti) 積而造成的排量損失。
3、結構.上的若幹特點
(1)保持葉片與(yu) 定子內(nei) 表麵接觸轉子旋轉時保證葉片與(yu) 定子內(nei) 表麵接觸時泵正常工作的必要條件。前文已指出葉片靠旋轉時離心甩出,但在壓油區葉片頂部有壓力油作用,隻靠離心力不能保證葉片與(yu) 定子可靠接觸。為(wei) 此,將壓力油也通至葉片底部。但這樣做在吸油區時葉片對定子的壓力又嫌過大,使定子吸油區過渡曲線部位磨損嚴(yan) 重。減少葉片厚度可減少葉片底部的作用力,但受到葉片強度的限製,葉片不能過薄。這往往成為(wei) 提高葉片泵工作壓力的障礙。在高壓葉片泵中采用各種結構來減小葉片對定子的作用力。
(2)端麵間隙
為(wei) 了使轉子和葉片能自由旋轉,它們(men) 與(yu) 配油盤二端麵間應保持一定間隙。 但間隙也不能過大,過大時將使泵的內(nei) 泄漏增加,泵容積效率降低。-般中、小規格的泵其端麵間隙為(wei) 0.02~0.04mm。
(3)定子曲線
這裏指的是連接四段圓弧的過渡曲線。較早期的泵采用阿基米德螺線。即ρ=r2+aφ及;p=r1-ap采用阿基米德螺線時,葉片徑向速度不變,
不會(hui) 引起泵流量脈動。
(4)葉片傾(qing) 角
從(cong) 前圖中可看出葉片頂部順轉子旋轉方向轉過一角度θ。很明顯,葉片頂部與(yu) 定子曲線間是滑動摩擦。在壓油區,葉片依靠定子內(nei) 表麵迫使葉片沿葉片槽向裏運;動,其作用與(yu) 凸輪相似,葉片與(yu) 定子內(nei) 表麵接觸時有一定壓力角。
4、類型
前圖所示葉片泵額定壓力6.3MPa,轉速有1000~1500r/min,流量有6~ 100r/min多種規格,容積效率90%左右,主要用於(yu) 機床。